Trace Elements Removal from Waster water by Ceratophyllum demersum

نویسندگان

  • MARYAM FOROUGHI
  • PAYAM NAJAFI
  • SAJJAD TOGHIANI
چکیده

Trace element contamination in aquatic ecosystems is one of the most important concerning of environmental health. Submerged aquatic plants can be used for the removal of Trace elements. The aim of this study was to investigate how Ceratophyllum demersum could affect on wastewater quality for recycling the wastewater to reuse for other purposes in agriculture and industrial fields. In this survey, two treatments in four replications were designed. The treatments were included raw municipal wastewater (RMW) and treated municipal wastewater (TMW). The experiment performed in outdoor of Khorasgan University area without aeration through 18 days period. In this study Fe, Zn, Mn, Ni, Pb and Cd were measured in wastewater through experiment. The average of removal efficiency of Fe, Zn, Mn, Ni, Pb and Cd from TMW were 40%, 47.5%, 90.82%, 96.55%, 100% and 100% respectively. Removal efficiency of Fe, Zn, Mn, Ni, Pb and Cd from RMW were 67.5%, 37.5%, 94.21%, 94.21%, 100% and 97.77% respectively. The results indicated that Ceratophyllum demersum had high capabilities to remove trace elements directly from the contaminated water. Therefore it can conclude that Ceratophyllum demersum could be used for refining the wastewater. @JASEM

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Ceratophyllum demersum in recycling macro elements from wastewater

Water is one of the most stable and abundant complexes on nature that can be polluted with natural and human factors. Therefore, it is necessary to ensure a timely warning for possible accumulation of polluting metal in natural waters in order to protect public health. One of the economic and rapid methods for elements removal is displacement of metals by biosorption. The purpose of this study ...

متن کامل

Effects of nanomolar copper on water plants--comparison of biochemical and biophysical mechanisms of deficiency and sublethal toxicity under environmentally relevant conditions.

Toxicity and deficiency of essential trace elements like Cu are major global problems. Here, environmentally relevant sub-micromolar concentrations of Cu (supplied as CuSO4) and simulations of natural light- and temperature cycles were applied to the aquatic macrophyte Ceratophyllum demersum. Growth was optimal at 10nM Cu, while PSII activity (Fv/Fm) was maximal around 2 nM Cu. Damage to the PS...

متن کامل

Effect of Hirschmanniella caudacrena on the Submersed Aquatic Plants Ceratophyllum demersum and Hydrilla verticillata.

In vitro pathogenicity tests demonstrated that Hirschmanniella caudacrena is pathogenic to Ceratophyllum demersum (coontail). Symptoms were chlorotic tissue, deformed stems, and, finally, death of the plant. Inoculum densities of 500 nematodes per 5-cm-long cutting in a test tube containing 50 ml of water resulted in death and decay of some of the cuttings within 8 weeks; 100 nematodes killed t...

متن کامل

گیاه‌پالایی نیکل از محیط هیدروپونیک به کمک علف شاخی (Ceratophyllum demersum L.)

Abstract With increasing of population, water resources’ pollution has been intensified and new and inexpensive methods are needed for remediation and improvement of water quality. Nickel is a necessary element in low concentrations for survival of the ecosystems, but in high concentrations is harmful and considered as a dangerous pollutant. This element pollutes water resources through differ...

متن کامل

Different strategies of cadmium detoxification in the submerged macrophyte Ceratophyllum demersum L.

The heavy metal cadmium (Cd) is highly toxic to plants. To understand the mechanisms of tolerance and resistance to Cd, we treated the rootless, submerged macrophyte Ceratophyllum demersum L. with sub-micromolar concentrations of Cd under environmentally relevant conditions. X-ray fluorescence measurements revealed changing distribution patterns of Cd and Zn at non-toxic (0.2 nM, 2 nM), moderat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011